728 research outputs found

    Cytochrome c as a Peroxidase: Activation of the Precatalytic Native State by H

    Get PDF
    In addition to serving as respiratory electron shuttle, ferri-cytochrome c (cyt c) acts as a peroxidase; i.e., it catalyzes the oxidation of organic substrates by H2O2. This peroxidase function plays a key role during apoptosis. Typical peroxidases have a five-coordinate heme with a vacant distal coordination site that permits the iron center to interact with H2O2. In contrast, native cyt c is six-coordinate, as the distal coordination site is occupied by Met80. It thus seems counterintuitive that native cyt c would exhibit peroxidase activity. The current work scrutinizes the origin of this structure-function mismatch. Cyt c-catalyzed peroxidase reactions show an initial lag phase that is consistent with the in situ conversion of a precatalyst to an active peroxidase. Using mass spectrometry, we demonstrate the occurrence of cyt c self-oxidation in the presence of H2O2. The newly generated oxidized proteoforms are shown to possess significantly enhanced peroxidase activity. H2O2-induced modifications commence with oxidation of Tyr67, followed by permanent displacement of Met80 from the heme iron. The actual peroxidase activation step corresponds to subsequent side chain carbonylation, likely at Lys72/73. The Tyr67-oxidized/carbonylated protein has a vacant distal ligation site, and it represents the true peroxidase-active structure of cyt c. Subsequent self-oxidation eventually causes deactivation. It appears that this is the first report that identifies H2O2-induced covalent modifications as an essential component for the peroxidase activity of native cyt c

    Calcium-Mediated Control of S100 Proteins: Allosteric Communication via an Agitator/Signal Blocking Mechanism.

    Get PDF
    Allosteric proteins possess dynamically coupled residues for the propagation of input signals to distant target binding sites. The input signals usually correspond to effector is present or effector is not present . Many aspects of allosteric regulation remain incompletely understood. This work focused on S100A11, a dimeric EF-hand protein with two hydrophobic target binding sites. An annexin peptide (Ax) served as the target. Target binding is allosterically controlled by Ca2+ over a distance of ∼26 Å. Ca2+ promotes formation of a [Ca4 S100 Ax2] complex, where the Ax peptides are accommodated between helices III/IV and III\u27/IV\u27. Without Ca2+ these binding sites are closed, precluding interactions with Ax. The allosteric mechanism was probed by microsecond MD simulations in explicit water, complemented by hydrogen exchange mass spectrometry (HDX/MS). Consistent with experimental data, MD runs in the absence of Ca2+ and Ax culminated in target binding site closure. In simulations on [Ca4 S100] the target binding sites remained open. These results capture the essence of allosteric control, revealing how Ca2+ prevents binding site closure. Both HDX/MS and MD data showed that the metalation sites become more dynamic after Ca2+ loss. However, these enhanced dynamics do not represent the primary trigger of the allosteric cascade. Instead, a labile salt bridge acts as an incessantly active agitator that destabilizes the packing of adjacent residues, causing a domino chain of events that culminates in target binding site closure. This agitator represents the starting point of the allosteric signal propagation pathway. Ca2+ binding rigidifies elements along this pathway, thereby blocking signal transmission. This blocking mechanism does not conform to the commonly held view that allosteric communication pathways generally originate at the sites where effectors interact with the protein

    Changes in Enzyme Structural Dynamics Studied by Hydrogen Exchange-Mass Spectrometry: Ligand Binding Effects or Catalytically Relevant Motions?

    Get PDF
    It is believed that enzyme catalysis is facilitated by conformational dynamics of the protein scaffold that surrounds the active site, yet the exact nature of catalytically relevant protein motions remains largely unknown. Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) reports on backbone H-bond fluctuations. HDX/MS thus represents a promising avenue for probing the relationship between enzyme dynamics and catalysis. A seemingly straightforward strategy for such studies involves comparative measurements during substrate turnover and in the resting state. We examined the feasibility of this approach using rabbit muscle pyruvate kinase (rM1-PK) which catalyzes the conversion of phosphoenolpyruvate and Mg-ADP to pyruvate and Mg-ATP. HDX/MS revealed that catalytically active rM1-PK undergoes significant rigidification in the active site. This finding is counterintuitive, considering the purported correlation between dynamics and catalysis. Interestingly, virtually the same rigidification was seen upon exposing rM1-PK to substrates or products in the absence of turnover. These data imply that the active site dynamics during turnover are dominated by protein-ligand binding interactions. These interactions stabilize H-bonds in the vicinity of the active site, thereby masking subtle dynamic features that might be uniquely associated with catalysis. Our data uncover an inherent problem with side-by-side turnover/resting state measurements, i.e., the difficulty to design a suitable reference state against which the working enzyme can be compared. Comparative HDX/MS experiments on enzyme dynamics should therefore be interpreted with caution

    Synergistic recruitment of UbcH7~Ub and phosphorylated Ubl domain triggers parkin activation

    Get PDF
    The E3 ligase parkin ubiquitinates outer mitochondrial membrane proteins during oxidative stress and is linked to early-onset Parkinson’s disease. Parkin is autoinhibited but is activated by the kinase PINK1 that phosphorylates ubiquitin leading to parkin recruitment, and stimulates phosphorylation of parkin’s N-terminal ubiquitin-like (pUbl) domain. How these events alter the structure of parkin to allow recruitment of an E2~Ub conjugate and enhanced ubiquitination is an unresolved question. We present a model of an E2~Ub conjugate bound to the phosphoubiquitin-loaded C-terminus of parkin, derived from NMR chemical shift perturbation experiments. We show the UbcH7~Ub conjugate binds in the open state whereby conjugated ubiquitin binds to the RING1/IBR interface. Further, NMR and mass spectrometry experiments indicate the RING0/RING2 interface is re-modelled, remote from the E2 binding site, and this alters the reactivity of the RING2(Rcat) catalytic cysteine, needed for ubiquitin transfer. Our experiments provide evidence that parkin phosphorylation and E2~Ub recruitment act synergistically to enhance a weak interaction of the pUbl domain with the RING0 domain and rearrange the location of the RING2(Rcat) domain to drive parkin activity

    Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems

    Get PDF
    Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03)National Institutes of Health (U.S.) (Grant GM10407

    Drug-tunable multidimensional synthetic gene control using inducible degron-tagged dCas9 effectors

    Get PDF
    Deactivated Cas9 fused to transactivation domains can be used to control gene expression, however its presence can prevent rapid switching between different regulatory states. Here the authors generate conditionally degradable dCas9 and Cpf1 proteins for multidimensional control of functional activity

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Carbene footprinting accurately maps binding sites in protein–ligand and protein–protein interactions

    Get PDF
    Specific interactions between proteins and their binding partners are fundamental to life processes. The ability to detect protein complexes, and map their sites of binding, is crucial to understanding basic biology at the molecular level. Methods that employ sensitive analytical techniques such as mass spectrometry have the potential to provide valuable insights with very little material and on short time scales. Here we present a differential protein footprinting technique employing an efficient photo-activated probe for use with mass spectrometry. Using this methodology the location of a carbohydrate substrate was accurately mapped to the binding cleft of lysozyme, and in a more complex example, the interactions between a 100 kDa, multi-domain deubiquitinating enzyme, USP5 and a diubiquitin substrate were located to different functional domains. The much improved properties of this probe make carbene footprinting a viable method for rapid and accurate identification of protein binding sites utilizing benign, near-UV photoactivation

    Optogenetic Control of Subcellular Protein Location and Signaling in Vertebrate Embryos.

    Get PDF
    This chapter describes the use of optogenetic heterodimerization in single cells within whole-vertebrate embryos. This method allows the use of light to reversibly bind together an "anchor" protein and a "bait" protein. Proteins can therefore be directed to specific subcellular compartments, altering biological processes such as cell polarity and signaling. I detail methods for achieving transient expression of fusion proteins encoding the phytochrome heterodimerization system in early zebrafish embryos (Buckley et al., Dev Cell 36(1):117-126, 2016) and describe the imaging parameters used to achieve subcellular light patterning
    corecore